Física | Ciências Biológicas | Química

Instruções para a realização da prova

- Neste caderno, deverão ser respondidas as questões das provas de **Física** (questões de 1 a 6), de **Ciências Biológicas** (questões de 7 a 12) e de **Química** (questões de 13 a 18).
- A prova deve ser feita a caneta esferográfica preta. Utilize apenas o espaço reservado (pautado) para a resolução das questões.
- **Atenção:** nas questões que exigem cálculo, não basta escrever apenas o resultado final. É necessário mostrar a resolução ou o raciocínio utilizado para responder às questões.
- A duração total da prova é de quatro horas.

ATENÇÃO

Os rascunhos **não** serão considerados na correção.

	AMP 2015 – 2ª FASE BIOLÓGICAS QUÍMICA	ORDEM	INSCRIÇÃO	ESCOLA	SALA	LUGAR NA SALA
NOME		ASSINATURA DO CANDIDATO			•	
		•				

As fórmulas necessárias para a resolução de algumas questões são fornecidas no próprio enunciado – leia com atenção. Quando necessário, use:

 $g = 10 \text{ m/s}^2$

 $\pi = 3$

1																	18
1 H				Class	sifica	ação	Per	iódio	ca do	os							He
Hidrogênio 1,0079	2			Ε	leme	entos	s Qu	ímic	os			13	14	15	16	17	Hélio 4,0026
³ Li	⁴ Be											⁵ B	° C	, N	[®] O	° F	Ne
Lítio 6,941(2)	Berílio 9,0122											Boro 10,811(5)	Carbono 12,011	Nitrogênio 14,007	Oxigênio 15,999	Fluor 18,998	Neônio 20,180
Na	Mg											13 AI	Si	15 P	16 S	17 CI	¹⁸ Ar
Sódio 22,990	Magnésio 24,305	3	4	5	6	7	8	9	10	11	12	Alumínio 26,982	Silício 28,086	Fósforo 30,974	Enxofre 32,066(6)	Cloro 35,453	Argônio 39,948
19 K	Ca	Sc	Ti	23 V	²⁴ Cr	Mn Mn	Fe Fe	Co	Ni Ni	²⁹ Cu	³⁰ Zn	31 Ga	³² Ge	³³ As	Se	35 Br	36 Kr
Potássio 39,098	Cálcio 40,078(4)	Escândio 44,956	Titânio 47,867	Vanádio 50,942	Crômio 51,996	Manganês 54,938	Ferro 55,845(2)	Cobalto 58,933	Níquel 58,693	Cobre 63,546(3)	Zinco 65,39(2)	Gálio 69,723	Germânio 72,61(2)	Arsênio 74,922	Selênio 78,96(3)	Bromo 79,904	Criptônio 83,80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	′∣ Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	l In	Sn	Sb	Te		Xe
Rubídio 85,468	Estrôncio 87,62	Ítrio 88,906	Zircônio 91,224(2)	Nióbio 92,906	Molibdênio 95,94	Tecnécio 98,906*	Rutênio 101,07(2)	Ródio 102,91	Paládio 106,42	Prata 107,87	Cádmio 112,41	Índio 114,82	Estanho 118,71	Antimônio 121,76	Telúrio 127,60(3)	lodo 126,90	Xenônio 131,29(2)
55	56	57 a 71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La-Lu	Háfnio	Ta	W Tungstênio	Renio	Os Ósmio	Iridio Ir	Pt	Au	Hg	TI Tálio	Pb	Bi	Po	At	Rn
132,91	137,33		178,49(2)	180,95	183,84	186,21	190,23(3)	192,22	195,08(3)	196,97	200,59(2)	204,38	207,2	208,98	209,98*	209,99*	222,02*
87	88	89 a 103	104	105	106	107	108	109									
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt									
Frâncio 223,02*	Rádio 226,03*		Rutherfórdio 261*	Dúbnio 262*	Seabórgio 	Bóhrio 	Hássio 	Meitnério 									
	•					•				•	•	•					
Número →	25		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
a	→ Mr	n	La	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Símbolo ———————————————————————————————————	Manganês 54,938		Lantânio 138,91	Cério 140,12	Praseodími 140 91	Neodímio 144,24(3)	Promécio 146,2*9	Samário 150,36(3)	Európio 151,96	Gadolínio 157,25(3)	Térbio 158,93	Disprésio 162,50(3)	Hólmio 164,93	Érbio 167,26(3)	Túlio 168,93	Itérbio 173,04(3)	Lutécio 174,97
_>			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
ssa atômica relativa ito é ±1, exceto	quando indicad	do entre	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
êntesis. Os valores opo mais estável.	s com * refere	m-se ao	Actínio 227,03*	Tório 232,04*	Protactínio 231,04*	Urânio 238,03*	Netúnio 237,05*	Plutônio 239,05*	Americio 241,06*	Cúrio 244,06*	Berquélio 249,08*	Califórnio 252,08*	Einstênio 252,08*	Férmio 257,10*	Mendelévio 258,10*	Nobélio 259,10*	Laurêncio 262,11

- **1.** A Agência Espacial Brasileira está desenvolvendo um veículo lançador de satélites (VLS) com a finalidade de colocar satélites em órbita ao redor da Terra. A agência pretende lançar o VLS em 2016, a partir do Centro de Lançamento de Alcântara, no Maranhão.
- a) Considere que, durante um lançamento, o VLS percorre uma distância de 1200 km em 800 s. Qual é a velocidade média do VLS nesse trecho?
- b) Suponha que no primeiro estágio do lançamento o VLS suba a partir do repouso com aceleração resultante constante de módulo a_R . Considerando que o primeiro estágio dura 80 s, e que o VLS percorre uma distância de 32 km, calcule a_R .

Resolução (será conside	rado apenas o que estiver dentro deste e	espaço).

- **2.** Movimento browniano é o deslocamento aleatório de partículas microscópicas suspensas em um fluido, devido às colisões com moléculas do fluido em agitação térmica.
- a) A figura abaixo mostra a trajetória de uma partícula em movimento browniano em um líquido após várias colisões. Sabendo-se que os pontos negros correspondem a posições da partícula a cada 30 s, qual é o módulo da velocidade média desta partícula entre as posições A e B?
- b) Em um de seus famosos trabalhos, Einstein propôs uma teoria microscópica para explicar o movimento de partículas sujeitas ao movimento browniano. Segundo essa teoria, o valor eficaz do deslocamento de uma partícula em uma dimensão é dado por $I = \sqrt{2 \ D \ t}$, onde t é o tempo em segundos e D = kT/r é o coeficiente de difusão de uma partícula em um determinado fluido, em que $k = 3 \times 10^{-18} \ \text{m}^3/\text{sK}$, T é a temperatura absoluta e r é o raio da partícula em suspensão. Qual é o deslocamento eficaz de uma partícula de raio $r = 3 \ \mu \text{m}$ neste fluido a $T = 300 \ \text{K}$ após 10 minutos?

Resolução (será considerado apenas o qu	ue estiver dentro dest	e espaço)	•	
				10 μm
				10 μm
	-			_
				•
			В	
			<u> </u>	-

T2

- **3.** Jetlev é um equipamento de diversão movido a água. Consiste em um colete conectado a uma mangueira que, por sua vez, está conectada a uma bomba de água que permanece submersa. O aparelho retira água do mar e a transforma em jatos para a propulsão do piloto, que pode ser elevado a até 10 metros de altura (ver figura ao lado).
- a) Qual é a energia potencial gravitacional, em relação à superfície da água, de um piloto de 60 kg, quando elevado a 10 metros de altura?
- b) Considere que o volume de água por unidade de tempo que entra na mangueira na superfície da água é o mesmo que sai nos jatos do colete, e que a bomba retira água do mar a uma taxa de 30 litros/s. Lembre-se que o Impulso \vec{l} de uma força constante \vec{F} , dado pelo produto desta força pelo intervalo de tempo Δt de sua aplicação $\vec{l} = \vec{F} \Delta t$, é igual, em módulo, à

variação da quantidade de movimento ΔQ do objeto submetido a esta força. Calcule a diferença de velocidade entre a água que passa pela mangueira e a que sai nos jatos quando o colete propulsor estiver mantendo o piloto de m=60 kg em repouso acima da superfície da água. Considere somente a massa do piloto e use a densidade da água como $\rho=1$ kg/litro .

Resolução (será considerado apenas o que estiver dentro deste espaço).

- **4.** Alguns experimentos muito importantes em física, tais como os realizados em grandes aceleradores de partículas, necessitam de um ambiente com uma atmosfera extremamente rarefeita, comumente denominada de ultra-alto-vácuo. Em tais ambientes a pressão é menor ou igual a 10⁻⁶ Pa.
- a) Supondo que as moléculas que compõem uma atmosfera de ultra-alto-vácuo estão distribuídas uniformemente no espaço e se comportam como um gás ideal, qual é o número de moléculas por unidade de volume em uma atmosfera cuja pressão seja $P = 3.2 \times 10^{-8}$ Pa, à temperatura ambiente T = 300 K? Se necessário, use: Número de Avogrado $N_A = 6 \times 10^{23}$ e a Constante universal dos gases ideais R = 8 J/molK.
- b) Sabe-se que a pressão atmosférica diminui com a altitude, de tal forma que, a centenas de quilômetros de altitude, ela se aproxima do vácuo absoluto. Por outro lado, pressões acima da encontrada na superfície terrestre podem ser atingidas facilmente em uma submersão aquática. Calcule a razão $P_{\text{sub}}/P_{\text{nave}}$ entre as pressões que devem suportar a carcaça de uma nave espacial (P_{nave}) a centenas de quilômetros de altitude e a de um submarino (P_{sub}) a 100 m de profundidade, supondo que o interior de ambos os veículos se encontra à pressão de 1 atm. Considere a densidade da água como $\rho = 1000 \text{ kg/m}^3$.

Resolução (será considerado apenas o que estiver dentro deste espaço).
neconação (con a comonado a pomas o que como a acinio acono copaço).

UNICAMP vestibular 2015

- **5.** O primeiro trecho do monotrilho de São Paulo, entre as estações Vila Prudente e Oratório, foi inaugurado em agosto de 2014. Uma das vantagens do trem utilizado em São Paulo é que cada carro é feito de ligas de alumínio, mais leve que o aço, o que, ao lado de um motor mais eficiente, permite ao trem atingir uma velocidade de oitenta quilômetros por hora.
- a) A densidade do aço é $d_{aço} = 7.9 \text{ g/cm}^3$ e a do alumínio é $d_{Al} = 2.7 \text{ g/cm}^3$. Obtenha a razão $\left(\frac{\tau_{aço}}{\tau_{Al}}\right)$ entre os trabalhos realizados pelas forças resultantes que aceleram dois trens de dimensões idênticas, um feito de aço e outro feito de alumínio, com a mesma aceleração constante de módulo a, por uma mesma distância l.
- b) Outra vantagem do monotrilho de São Paulo em relação a outros tipos de transporte urbano é o menor nível de ruído que ele produz. Considere que o trem emite ondas esféricas como uma fonte pontual. Se a potência sonora emitida pelo trem é igual a P=1,2 mW, qual é o nível sonoro S em dB, a uma distância R=10 m do trem? O nível sonoro S em dB é dado pela expressão S=10 dB $\log \frac{I}{I_0}$, em que I é a intensidade da onda sonora e $I_0=10^{-12}$ W / m² é a intensidade de referência padrão correspondente ao limiar da audição do ouvido humano.

Resolução (será considerado apenas o que estiver dentro deste espaço).

- **6.** Um desafio tecnológico atual é a produção de baterias biocompatíveis e biodegradáveis que possam ser usadas para alimentar dispositivos inteligentes com funções médicas. Um parâmetro importante de uma bateria biocompatível é sua capacidade específica (*C*), definida como a sua carga por unidade massa, geralmente dada em mAh/g. O gráfico abaixo mostra de maneira simplificada a diferença de potencial de uma bateria à base de melanina em função de *C*.
- a) Para uma diferença de potencial de 0,4 V, que corrente média a bateria de massa m = 5,0 g fornece, supondo que ela se descarregue completamente em um tempo t = 4 h?
- b) Suponha que uma bateria preparada com C = 10 mAh/g esteja fornecendo uma corrente constante total i = 2 mA a um dispositivo. Qual é a potência elétrica fornecida ao dispositivo nessa situação?

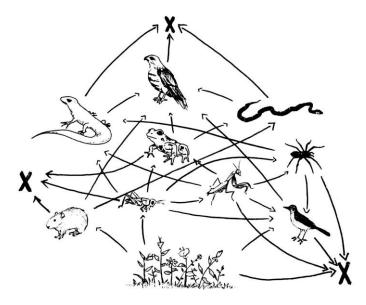
T6

- **7.** Um cidadão foi preso por um crime que não cometeu. O exame do DNA encontrado na cena do crime revelou que ele é compatível com o do indivíduo apontado como culpado. As provas colhidas em um outro crime, ocorrido durante a reclusão do suposto criminoso, curiosamente apontaram o mesmo perfil genético, colocando em cheque o trabalho de investigação realizado. As suspeitas então recaíram sobre um irmão gêmeo do indivíduo.
- a) Como são denominados os gêmeos do caso investigado? Que tipo de análise seria capaz de distinguir os gêmeos?
- b) Descreva os processos de fecundação e desenvolvimento embrionário que podem ter gerado os gêmeos envolvidos no caso investigado.

Resolução (será considerado apenas o que estiver dentro deste espaço).

- **8.** Os fósseis são uma evidência de que nosso planeta foi habitado por organismos que já não existem atualmente, mas que apresentam semelhanças com organismos que o habitam hoje.
- a) Por que espécies diferentes apresentam semelhanças anatômicas, fisiológicas e bioquímicas?
- b) Cite quatro características que todos os seres vivos têm em comum.

Resolução (será considerado apenas o que estiver dentro deste espaço).	
	—
	—
	_


- **9.** O desenvolvimento da microscopia trouxe uma contribuição significativa para o estudo da Biologia. Microscópios ópticos que usam luz visível permitem ampliações de até 1.000 vezes, sendo possível observar objetos maiores que 200 nanômetros.
- a) Cite dois componentes celulares que podem ser observados em uma preparação que contém uma película extraída da epiderme de uma cebola, utilizando-se um microscópio de luz.
- b) Quais células podem ser observadas em uma preparação de sangue humano, utilizando-se um microscópio de luz?

Resolução (será considerado apenas o que estiver dentro deste espaço).

10. A figura abaixo representa relações existentes entre organismos vivos.

(Adaptado de: http://pseudoartes.blogspot.com.br/2010_12_01_archive.html.)

- a) O que é representado na figura? Que tipo de organismo é representado por X?
- b) Qual seria a consequência do desaparecimento das aves mostradas na figura acima? Qual seria a consequência do desaparecimento das plantas mostradas na figura acima?

Resolução (será considerado apenas o que estiver dentro deste espaço).

- **11.** O vírus Ebola foi isolado em 1976, após uma epidemia de febre hemorrágica ocorrida em vilas do noroeste do Zaire, perto do rio Ebola. Esse vírus está associado a um quadro de febre hemorrágica extremamente letal, que acomete as células hepáticas e o sistema retículoendotelial. O surto atual na África Ocidental (cujos primeiros casos foram notificados em março de 2014) é o maior e mais complexo desde a descoberta do vírus. Os morcegos são considerados um dos reservatórios naturais do vírus. Sabe-se que a fábrica onde surgiram os primeiros casos dos surtos de 1976 e 1979 era o *habitat* de vários morcegos. Hoje o vírus é transmitido de pessoa para pessoa.
- a) Como é a estrutura de um vírus? Dê exemplo de duas zoonoses virais.
- b) Compare as formas de transmissão do vírus Ebola e do vírus da gripe.

Resolução (será considerado apenas o que estiver dentro deste espaço).
. —————————————————————————————————————

- **12.** A vaca é um ruminante, cujo estômago tem compartimentos onde ocorre o processo de digestão da celulose. Esse processo é auxiliado por microrganismos.
- a) Que tipo de relação biológica existe entre a vaca e esses outros seres vivos? Justifique.
- b) Que nutrientes do mesmo grupo da celulose os humanos conseguem digerir?

Resolução (será considerado apenas o que estiver dentro deste espaço).	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

13. Notícia 1- Vazamento de gás oxigênio nas dependências do Hospital e Maternidade São Mateus, Cuiabá, em 03/12/13. Uma empresária que atua no setor de venda de oxigênio disse ao *Gazeta Digital* que o gás não faz mal para a saúde. "Pelo contrário, faz é bem, pois é ar puro...".

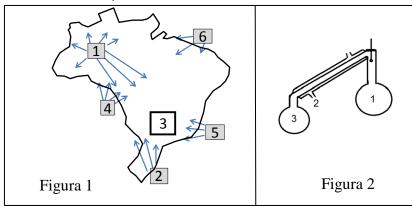
(Adaptado de http://www.gazetadigital.com.br/conteudo/show/secao/9/materia/405285. Acessado em 10/09/2014.)

Notícia 2- Vazamento de oxigênio durante um abastecimento ao pronto-socorro da Freguesia do Ó, zona norte de São Paulo, em 25/08/14. Segundo testemunhas, o gás que vazou do caminhão formou uma névoa rente ao chão. O primeiro carro que pegou fogo estava ligado. Ao ver o incêndio, os motoristas de outros carros foram retirar os veículos...

(Adaptado de http://noticias.r7.com/sao-paulo/cerca-de-40-pacientes-sao-transferidos-apos-incendio-em-hospital-dazona-norte-26082014. Acessado em 10/09/2014.)

Ficha de informações de segurança de uma empresa que comercializa esse produto.

EMERGÊNCIA

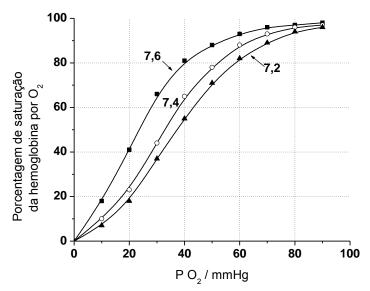

- > CUIDADO! Gás oxidante a alta pressão.
- Acelera vigorosamente a combustão.
- > Equipamento autônomo de respiração pode ser requerido para equipe de salvamento.
- > Odor: Inodoro
- a) Levando em conta as informações fornecidas na questão, você concorda ou discorda da declaração da empresária na notícia 1? Justifique sua resposta.
- b) Após o vazamento descrito na notícia 2, motoristas tentaram retirar os carros parados mas não tiveram êxito na sua tentativa. Qual deve ter sido a estratégia utilizada para que eles não tenham tido êxito? Justifique, do ponto de vista químico, a razão pela qual não deveriam ter utilizado essa estratégia.

Resolução (será considerado apenas o que estiver dentro deste espaço).		

14. Na figura 1 abaixo estão indicadas as diversas massas de ar (1, 2, 4, 5 e 6) que atuam no território brasileiro durante o verão. Na figura 2 é apresentado o esquema de um aparelho utilizado em laboratórios químicos. Pode-se dizer que há uma analogia entre o fenômeno da ocorrência de chuva no Brasil durante o verão e o funcionamento do aparelho.

- a) É possível correlacionar as partes com numeração igual nas duas figuras. Assim, desempenham funções parecidas em fenômenos diferentes as partes indicadas por 1, 2 e 3. Com base nessa correlação, e a partir do funcionamento do aparelho, explique como ocorre um tipo de chuva nas regiões Centro-Oeste e Sudeste no verão.
- b) Na Figura 1, o número 4 representa a massa de ar tropical continental (mTc), quente e seca. Explique, do ponto de vista das transformações físicas da água, como essa massa de ar poderia ser responsável pelo atípico regime de chuvas nas regiões Centro-Oeste e Sudeste ocorrido no verão 2013-2014.

Resolução (será considerado apenas o que estiver dentro deste espaço).


- **15.** O processo de condenação por falsificação ou adulteração de produtos envolve a identificação do produto apreendido. Essa identificação consiste em descobrir se o produto é aquele informado e se os componentes ali contidos estão na quantidade e na concentração indicadas na embalagem.
- a) Considere que uma análise da ANVISA tenha descoberto que o comprimido de um produto apresentava 5,2 x 10⁻⁵ mol do princípio ativo citrato de sildenafila. Esse produto estaria ou não fora da especificação, dado que a sua embalagem indicava haver 50 mg dessa substância em cada comprimido? Justifique sua resposta.
- b) Duas substâncias com efeitos terapêuticos semelhantes estariam sendo adicionadas individualmente em pequenas quantidades em energéticos. Essas substâncias são o citrato de sildenafila e a tadalafila. Se uma amostra da substância adicionada ao energético fosse encontrada, seria possível diferenciar entre o citrato de sildenafila e a tadalafila, a partir do teor de nitrogênio presente na amostra? Justifique sua resposta.

Dados: Citrato de sildenafila $(C_{22}H_{30}N_6O_4S\cdot C_6H_6O_7; 666,7 \text{ g mol}^{-1})$ e tadalafila $(C_{22}H_{19}N_3O_4; 389,4 \text{ g mol}^{-1})$.

Resolução (será considerado apenas o que estiver dentro deste espaço).

16. A figura abaixo mostra a porcentagem de saturação da hemoglobina por oxigênio, em função da pressão de O_2 , para alguns valores de pH do sangue.

- a) Devido ao metabolismo celular, a acidez do sangue se altera ao longo do aparelho circulatório. De acordo com a figura, um aumento da acidez do sangue <u>favorece</u> ou <u>desfavorece</u> o transporte de oxigênio no sangue? Justifique sua resposta com base na figura.
- b) De acordo com o conhecimento científico e <u>a partir dos dados da figura</u>, explique por que uma pessoa que se encontra em uma região de grande altitude apresenta dificuldades de respiração.

Resolução (será considerado apenas o que estiver dentro deste espaço).

- **17**. Água potável pode ser obtida a partir da água do mar basicamente através de três processos. Um desses processos é a osmose reversa; os outros dois envolvem mudanças de fases da água. No processo denominado *MSFD*, a água do mar é aquecida, vaporizada e em seguida liquefeita. No outro, denominado *FM*, a água do mar é resfriada, solidificada e em seguida fundida. Nesses dois processos, a água líquida passa para outro estado de agregação e dessa forma se separa dos solutos presentes na água do mar.
- a) Considere a afirmação: "Os processos industriais MSFD e FM são análogos a fenômenos naturais ao promoverem a separação e purificação da água; no entanto, nos processos MSFD e FM essa purificação necessita de energia, enquanto nos fenômenos naturais essa energia não é necessária". Responda inicialmente se concorda totalmente, concorda parcialmente ou discorda totalmente e só depois justifique sua escolha.
- b) Suponha que uma mesma quantidade de água dessalinizada fosse obtida por esses dois processos industriais até a primeira mudança de fase, a partir de água do mar a 25 °C. Em qual dos dois processos, *MSFD* ou *FM*, a quantidade de energia envolvida seria maior? Justifique sua resposta.

Dados: $H_2O(\ell) \rightarrow H_2O(s)$; $\Delta H f u s = -6 \text{ kJ mol}^{-1}$; $H_2O(\ell) \rightarrow H_2O(g)$; $\Delta H v a p = 42 \text{ kJ mol}^{-1}$.

Considerar que os processos **MSFD** e **FM** se baseiam nas transições de fases da água pura, em condições padrão, e que o calor específico da água do mar é constante em toda a faixa de temperatura.

Resolução (será considerado apenas o que estiver dentro deste espaço).

- **18.** Entre os produtos comerciais engarrafados, aquele cujo consumo mais tem aumentado é a água mineral. Simplificadamente, pode-se dizer que há dois tipos de água mineral: a gaseificada e a não gaseificada. A tabela abaixo traz informações simplificadas sobre a composição de uma água mineral engarrafada.
- a) Na coluna relativa à quantidade não está especificada a respectiva unidade. Sabe-se, no entanto, que o total de cargas positivas na água é igual ao total de cargas negativas. Levando em conta essa informação e considerando que apenas os íons da tabela estejam presentes no produto, você escolheria, como unidade de quantidade, miligramas ou milimol? Justifique sua resposta.

íon	Quantidade
hidrogenocarbonato	1,200
cálcio	0,310
magnésio	0,100
sódio	0,380

b) Levando em conta os dados da tabela e sua resposta ao item **a**, identifique o sal em maior concentração nessa amostra de água mineral, dando seu nome e fórmula. Justifique sua resposta.

Resolução (será considerado apenas o que estiver dentro deste espaço).	

Não destacar esta folha

